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NdFeB20-25~ 1.6Wigglers8

Total65

NdFeB16~ 1.6Undulators38

NdFeB11~ 1.6Undulators & 3T 
Wiggler

13

Sm2Co175-6 ~ 2In-vacuum 
Undulators

6

MaterialMin Gap
[mm]

Length [m]TypeSegments

A Number of Exotic Ids : Helical, Aplle II, Quasiperiodic,….
More Details @ : http://www.esrf.fr/machine/groups/insertion_devices/Ids/installed_IDs.html

Installed IDs



ESRF
ID Segmentation

3 independent segments/ straight section (5 m)

Advantage=beamline flexibility

- can be 3 different magnetic structures

- optimum cumulated length vs. heat load

- limits failure impact on beamline operation

Fully equipped straights:  21
Straights with one free position: 6
Straights with two free positions: 1

End of December 2002

2003/2004:
Start upgrade of a number of straights: 
15 mm stainless steel ----> 10 mm aluminium neg coated vacuum chambers

≈ 12 new magnet assemblies; U32,U35 & shorter period U2x



ESRF
Revolving Undulators

2 different undulators on the same support:

Features:
-Length: 1.6 m
-Interchangeable with standard IDs
-Compatible with all vacuum chambers

Status
-first prototype end of December 2002
-Construction of three devices in 2003

Additional degrees of freedom for beamlines:
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Revolving Undulators



ESRF
Revolving Undulators
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Aperture (HxV) 1mm x 0.5 mm @ 30 m

≈75 % of time

ID10
ESRF High  Beta
I=0.2 A
Min. gap=11 mm
L und.=3.2 m

Typical Revolver Undulator :

- K=2.2,  Continuously Tunable
Period ~ 35 mm @ 11 mm

K=1-1.5 High Brilliance but limited tunability :
Period ~ 18-27 mm @ 11 mm

+



ESRF
Circular polarization

Photon energy: 0.4 to ≈ 15 keV Photon energy:> 20 keV

3 devices installed:

1- B0=1.1 T, λ0 = 210 mm, 7 periods

2- B0=1.9 T, λ0 = 230 mm, 7 periods

3- B0=3.1 T, λ0 = 375 mm, 2 periods

Asymmetric wigglers

Fast flipping of circular 
polarization is important 
(circular dichroism)

Fast flipping of circular 
polarization is important 
(circular dichroism)

Helical undulators
6 devices installed:

“HELIOS” type : 
2 devices
λ0 = 52 mm

APPLE II type:
3 devices
λ0 = 38 & 88 mm

1 Electromagnet/permanent magnet 
device: λ0 = 80 mm



ESRF
APPLE II undulators

A1

A4
A3

S
A2

magnet block adjustable
keeper

girder

λ0=88 mm
- L= 1.6 m
- Ef :0.3 - 2.5 keV

λ0=38 mm
- L= 1.6 m
- Ef : 3.5 - 8 keV

S. Sasaki & al. (1993)



ESRF
APPLE II undulators

Advantage: High flexibility

Various polarization states:
-elliptic
-linear inclined

horizontal

Circular

Vertical

ID: HU88 gap 16 mm,
power density @ 30m

Linear inclined



ESRF
APPLE II undulators

• Drawback :

-> Complicated technology
-mechanically (forces)
-field error correction

-> Interaction with stored beam
-usual COD (~ 1/E )
+

-significant systematic focusing ( ~ 1/E2 )
- non linear effect (predictable)
- can be (partially) corrected
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SHIM
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on APPLE II

Method optimized for elliptic mode
- correction partial in linear inclined mode
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ESRF
ID8 APPLE II

Layout

2 identical segments

- period 88 mm
- L=1.6 m
- Bxmax=0.55 T
- Bzmax = 0.6 T

+
Phasing section (DC electromagnet)

- Bmax=0.1 T @ 10 A
- Phase shift =2 π @ 350 eV

Current directly controlled and calibrated by beamline



ESRF
Operation of APPLE II undulators

At ESRF: Users can freely change gap and phase on all helical undulators
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ESRF
Electromagnet/permanent magnet 

helical undulator

-6 layers
-water cooled
-I max=250 A- -

-Fe-Si material
-laminated

Vertical fieldVertical field

- p.m blocks
- Sm2Co17

Horizontal fieldHorizontal field

Coil

+

Magnetic circuit



ESRF
EMPHU structure

Standard support

Undulator

Min. gap 16 mm
λ0= 80 mm
L=1.6 m (41 poles)
Bz max=0.2 T
Bz max=0.2 T
Rdc=0.05 Ohm
L=2mH
Ef=1.6 Kev @ 16 mm

Device optimised for circular polarization



ESRF
EMPHU AC correction
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ESRF
EMPHU in ESRF ring

Installed in ID12

Since summer 1998

Operation modes

-DC

-AC @ 2Hz max

T. Deshaux



ESRF
3 Tesla permanent magnet wiggler

Measured peak field:

3.13 T @ gap 11 mm
3.57 T @ gap 6 mm



ESRF
3 Tesla permanent magnet wiggler

Installed on ID15
October 2001

In replacement of 
the 4 T SCW

Field integral has 
hysteresis  vs gap 
(asymmetry)

Operates as a 
binary device with 
hysteresis 
correction

T. Deshaux



ESRF
In-vacuum Undulators

R&D started in 1997

First prototype installed in January 1999



ESRF
In vacuum IDs

Main purpose
-higher flux in 50-100 keV region
- undulators :K≈1.5 to 1.8 (λ0=21-23 mm)

Aperture 0.25*0.25 mm2 @ 30 m
I= 200 mA
ESRF High beta
Emittance: 4 nm & 0.04 nm
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ESRF
Technology of in vacuum IDs

Magnetic assembly
- p.p.m. & hybrid  type
-material Sm2Co17

Baking ≈ 120-140 deg +
Potential radiation damages

Vertical motion (motorised)

- 1 mm/sec
- 0 to 30 mm
- encoder resol.: 0.625 µm

Gap
control

T. Deshaux



ESRF

Copper : 
Cure Resistive Wall
Instability

Nickel :
To insure flatness by
Magnetic force 

Copper Nickel  Sheet
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E- Beam

Ext.

Int.

Bending Magnet
Radiation

Cu/Ni Sheet Damaged of ID9 
In-vacuum Undulator
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Cu+Ni  thickness increased :
60+25 ->  60+50 micr.

Improve 
longitudinal Stretching

No problem since then

Remedies



ESRF
Magnetic measurement 

of in vacuum IDs

Field measurements:

Methods used for measurement 
& correction of conventional  
IDs are usable But take more time  (~ nb of periods)

T. Deshaux

T. Deshaux



ESRF
Magnetic measurement 

of in vacuum IDs
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ESRF
In vacuum IDs: lifetime vs gap

MDT ID 23 Apr 2001
mode uniform
I [mA] 195
scrapper opened
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ID11 in vacuum U23
L=1.6 m

=
Other in vacuum IDs
L=2 m 

<=10 % lifetime reduction @ gap 5 mm (uniform & 2/3 filling mode)
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• Field Integrals < 20 Gcm for all gap settings =>  No correction coils.

• No measurable  perturbation in multibunch, 16bunch, Hybrid  user operation 
(lifetime, orbit,..)

• Some small impedance or tune shift  effects observed with all in-vacuum 
undulator closed in high current single bunch (preliminary).

Effect on the beam of 
ID9,ID13,ID22,ID29
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Status of In-vacuum Undulators
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Magnet Material :  Sm2Co17 
- Baked at 120 deg C
- No demagnetization so far (~ 4 years @  5< g <7 mm on ID11 )
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Gap = 5 mm

Recent Achievement of 
Superconducting Undulators
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ESRF
• Magnetism

– Accurate magnetic field & field integral calculation
– Magnetic measurement 
– Multipole and Phase  shimming
– Closed orbit distortion due to the hysteresis like persistent currents

• Cryogenic
– Use cryocoolers integrated in Cryostat  (Sumitomo, Cryomech,..)
– Controlling heatload budget at 60 and 4 K :

• conduction
• Sheet resistivity
• Synchrotron radiation,
• Geometrical Wake fields.

• Low vessel pressure when both cold and  warm
– Baking, NEG ?…

• Electron Beam Dynamics

Technological Issues
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Announcing :
Workshop on 

Superconducting Insertion Devices

ESRF, 30th June-1st July, 2003

• Review the recent development in superconducting technology :
– Wigglers
– Undulators
– Mechanical & Cryogenic Engineering
– Magnetic Field Measurement
– Beam Dynamics Issues

• Stimulate world wide exchange and cooperation


